Chimpanzee the Toolmaker: A Study of the Complex Behaviors of Wild Chimpanzees

As humans, our closest living relatives are the chimpanzees. This term, chimpanzee, can be used in a general sense referring to the species within the genus Pan. This includes both Pan troglodytes, the “common” chimpanzee, and Pan paniscus, the “bonobo” chimpanzee. Studying these organisms, as well as the rest of the great apes, has been extremely helpful for scientists attempting to paint an evolutionary picture.

Common Chimpanzees (Pan troglodytes)

Bonobo Chimpanzee (Pan paniscus)

(Click Images to Enlarge – Images Found on Wikipedia article “Chimpanzee”)

It has also debunked the concept of “Man the Toolmaker”. While our species does have a particular reliance on technology, arguably greater so than any other species on the planet, we are not the only toolmakers. In fact, chimpanzees have a fairly impressive tool-kit that allows them to engage in complex activities. With this in mind, we can begin comparing “Man the Toolmaker” to “Chimpanzee the Toolmaker” by looking at three complex behaviors that wild chimpanzees partake in. These are nut-cracking, termite fishing, and the skewering of bush-babies using “spears”.

While nut-cracking may seem simple to some, it is actually a complex behavior that requires the use of two different stone tools. Nut-cracking requires both a “hammer” stone and an “anvil” stone. The nut is positioned onto the anvil and then struck with the hammer in order to crack open the tough outer shell of the nut to release the food reward in the center. A study by Boesch in 1991 discusses events in which mother chimpanzees would “provide” nuts or stones to their offspring to assist in nut-cracking. However, another study that also reviewed Boesch’s work (Lonsdorf, 2013) pointed out that the mothers seemed to be simply tolerant of their children taking the materials that they were working with. This brings about the question as to whether or not the mothers were actively making an effort to “teach” their offspring in these scenarios.

Recent studies have shown forms of teaching among chimpanzees regarding termite fishing (Musgrave, et al. 2016). Termite fishing is another complex behavior that requires the use of two different tools. In this scenario, a certain degree of future planning can be observed as the chimpanzee uses two sticks designed for different tasks. The first stick is generally stronger and more durable than the second as it is used simply to perforate the termite mound. Once this action has been performed, the second stick is then thrust into the mound and held there until termites begin to attack it. The stick can then be extracted, allowing the chimpanzee to eat the termites that are clinging on. Some groups of chimpanzees will also pull the end of the stick through their teeth before inserting it into the termite mound to craft a certain “brush-tip wand”. This has been shown to increase the efficiency of capturing termites and is an example of tool modification (Sanz, Call, & Morgan, 2009).

Bonobo Termite Fishing

(Click Image to Enlarge – Image Found on Wikipedia article “Tool use by animals”)

It is actually quite difficult to demonstrate teaching in the wild. However, researchers have now shown that some wild chimpanzees from the Goualougo Triangle actually donate termite fishing probes to naïve learners (Musgrave, et al. 2016). Regardless of the intentions of the “teacher” in this scenario, the researchers argue that teaching has occurred if three stipulations have been fulfilled. These stipulations are: “they occur in a learner’s presence, are costly to the teacher, and improve the learner’s performance.” Throughout this study, it is shown that these three criteria are met through this donation process. It is also suggested that teaching may be necessary for this particular activity because it is so complex. The chimpanzees here must make specialized, frayed tools from specific raw materials. Through studies like these, it is clear that teaching is not a uniquely human phenomenon.

Teaching is not the only activity recently thought to be unique to humans that we later observed in chimpanzees. Once scientists began noting that chimpanzees use and make their own tools, they then came up with the idea that humans were the only ones to use tools for advanced hunting. In other words, humans perform “tool-assisted predation” that goes well beyond using sticks to gather termites, but is this solely a human activity? As it turns out, some chimpanzees use tools to hunt monkeys known as bushbabies (Pruetz & Bertolani, 2007). Since these monkeys are nocturnal, they often can be found sleeping inside of hollow trees during the day. To get to these monkeys, chimpanzees will sometimes find holes in the tree and stab sharp sticks into them in an attempt to skewer the monkeys before they can get away. These chimpanzees have been observed personally modifying sticks for this purpose, stripping them of branches and sharpening the tip with their teeth. Clearly, they are adept hunters.

With these examples in mind, one may begin to question what activities are unique to humans. Where exactly do we draw the line that defines humanity? For my next blog post, I will further discuss this concept and chimpanzees through some of the data that have been gathered from controlled experiments. Until next time, carry on with curiosity.

Works Cited

Boesch, C. (1991). Teaching among wild chimpanzees. Animal Behaviour41(3), 530-532.

Lonsdorf, E. V. (2013). The role of mothers in the development of complex skills in chimpanzees. In Building Babies (pp. 303-318). Springer New York.

Musgrave, S., Morgan, D., Lonsdorf, E., Mundry, R., & Sanz, C. (2016). Tool transfers are a form of teaching among chimpanzees. Scientific Reports6.

Sanz, C., Call, J., & Morgan, D. (2009). Design complexity in termite-fishing tools of chimpanzees (Pan troglodytes). Biology Letters5(3), 293-296.

Pruetz, J. D., & Bertolani, P. (2007). Savanna chimpanzees, Pan troglodytes verus, hunt with tools. Current Biology17(5), 412-417.



ddPCR – Droplet Digital Polymerase Chain Reaction

In my previous blog post, I discussed a scientific process known as the Polymerase Chain Reaction. Using the simple steps in this procedure, one can take a small amount of DNA and reproduce it exponentially until they obtain an ample, usable sample. Using PCR, other more detailed techniques have been developed to give a more quantitative measure regarding the amount of DNA or RNA that is seen in a particular sample. One example of this is real-time PCR, which has been used in a number of important experiments throughout the years. However, today we will be discussing a newer procedure known as droplet digital PCR (ddPCR). Digital PCR is generally considered to have a higher precision rate than real-time PCR.

Before we delve into the actual methodology behind droplet digital PCR, we should first discuss why it is important to quantify DNA and/or RNA. One situation in which ddPCR comes in handy is when one is trying to look at CNVs, or copy number variants, in a particular sample. For example, the number of amylase genes in humans can vary depending on the individual. If you want to tell how many copies of the amylase gene a particular individual has, then you can use ddPCR to get the answer. Furthermore, active genes use RNA as their messenger molecule to create particular proteins, so measuring RNA levels using ddPCR can tell how active a particular gene is.

To begin the process, the samples will need to be mixed with specific primers and probes (with fluorescent tags) that recognize the sequence that you are attempting to get the copy number of, as well as a sequence of known copy number (or in the example of RNA – a region of questionable activity versus one with a stable activity level such as a housekeeping gene).

The first step of this procedure is partitioning. This simply means dividing up the sample into equal volume droplets. As the image shows, the target and background DNA will be randomly distributed throughout the droplets. This is done in an automated fashion.

The samples are then amplified through normal PCR in each droplet simultaneously, maintaining ratios of the targeted DNA segments.

(Click to Enlarge Images – Images Modified from sites/ %20Figure%201%20FINAL%20CMYK.jpg )

The ddPCR machine then detects the levels of fluorescence of both target regions. Using this, you will receive ratios that can then be used to determine quantities based off of your “known” segments.

In other words, we compare the amount of fluorescence given off by the segment of known value to those of the unknown value. We will use the example of salivary amylase to further illuminate how this process works. Let’s say that we are comparing a gene that we know has two copies in every healthy human against the salivary amylase gene. If the machine reads off a ratio of one to four respectively, then we know that the individual in question has eight copies of the salivary amylase gene. The simple math can be seen below.

1x = 2    Where x is the multiplier and the solution is the number of genes
x = 2

4 x = ?
4 (2) = 8

Droplet digital PCR is largely automated which cuts down on the amount of human error, making it very precise. This process is also more accurate than real-time PCR because of the way in which the machine reads the fluorescence. It does so through the previously mentioned partitioned droplets. Because the droplets are so small, the ideal situation would be for them to either have one fragment of target DNA, or none. This means that the droplets can, and will be measured as a “have” or a “have not.” This allows for easy and accurate measurements of the fluorescence.

And that’s all there is to it! Until next time, carry on with curiosity!

Works Cited

Laboratory Equipment. (n.d.). Retrieved August 05, 2016, from

Polymerase Chain Reaction – Turning a Few Strands of DNA into Many

Prior to a process known as polymerase chain reaction, or PCR, studying DNA was a much more complicated process. With just a few drops of blood at a crime scene or dry brittle bones at an archaeological dig site, collecting a usable amount of DNA was nearly impossible. Then came a man named Kary Mullis who helped develop the innovative technique that is still used in laboratories worldwide today.

Kary Mullis is not your “stereotypical” scientist. As a local of California, he did a lot of his scientific thinking while surfing. He also often openly criticizes the way that scientists must apply for grants in this country and the system that this creates. Alongside this, he openly chronicled how he would develop and test his own psychedelic drugs, such as LSD. We could tell tales of his life behind the science.

Personal life aside, Kary Mullis will certainly go down in history for perfecting the polymerase chain reaction. PCR, while incredibly useful, is not a difficult procedure. To understand the process, we must go back to the basics of DNA. DNA is a double stranded molecule connected in the middle of the strands by bases known as adenine (A), thymine (T), cytosine(C), and guanine(G). In DNA, adenine always pairs with thymine (A-T), whereas cytosine always pairs with guanine (C-G). Attached to each of these bases is a sugar (deoxyribose) phosphate backbone. The molecule is weakest between the bases. This is because DNA is only held together between the bases by hydrogen bonds. There are two hydrogen bonds between adenine and thymine and three between cytosine and guanine. While these bonds are weak individually, together they hold the molecule into a stable, double-stranded form.

(Click Images to Enlarge – Images and Image Legends Found on Wikipedia articles “Base Pair” and “DNA”)

PCR works by manipulating temperature in a cyclic fashion. There are three steps to the procedure that occur over and over again.

  1. Denaturation
  2. Primer Annealing
  3. Elongation

Prior to the first step, you must add the DNA that you are attempting to amplify (AKA multiply), enzymes (proteins) to make the process work, free bases (nucleotides – the A’s, T’s, C’s, and G’s discussed above), and primers. Primers are simply sequences of nucleotides that bind to a segment of your target sequence in the DNA that you want to be amplified. One primer binds to the beginning and the other primer binds to the end of your particular sequence (forward and reverse primers). Once the primers attach, the proteins can go to work and add the rest of the bases.

The first step, denaturation, means that we simply raise the temperature to a point in which the DNA unwinds (since it is in a helix form) and all of the hydrogen bonds break between the bases in the DNA strands. This temperature must be hot enough to accomplish this, but not too hot as to denature the rest of the molecule. Generally, this is around 94 degrees Celsius.

Step two, primer annealing, simply involves the scientist lowering the temperature to a point in which the primers can bind to the DNA (generally around 56 degrees Celsius.) Once this has occurred, step three of the process can begin after the temperature is raised once more to approximately 72 degrees Celsius. One of the major enzymes needed for this process to run is known as DNA polymerase. Simply put, DNA polymerase actually goes through the newly single stranded molecules and adds the bases to make them double stranded once again. This process begins where the forward primer is attached.

One of the original problems with this process is that human DNA polymerase does not function at these high temperatures. The enzyme denatures, or breaks down. To remedy this situation, the polymerase of another organism is used. The Bacterium, Thermus aquaticus (Taq), lives and thrives in hot temperatures. Therefore, its DNA polymerase functions in these heated environments. This is why it can be used for this process. To reiterate, Taq Polymerase it does not denature in the heat the way that human polymerases do.

Once this process is complete, your DNA molecules should have duplicated. You then repeat this process approximately forty times. This causes an exponential increase. One molecule becomes two, two becomes four, four becomes eight, eight becomes sixteen, and so on and so forth until you are dealing with a usable amount of DNA.

With the correct ingredients and a cyclic change in temperature, we can prompt one of the most important molecules in the world to duplicate. Naturally, we do not change the temperatures manually. We have thermal cyclers to do this for us. Simply put the concoction together and add it to a PCR machine, apply the correct settings, close the lid and wait. We must thank the scientists who came before us for helping make our research a bit easier. Until next time, carry on with curiosity!


Works Cited

Base pair. (2016, May 28). In Wikipedia, The Free Encyclopedia. Retrieved 19:26, July 15, 2016, from

DNA. (2016, July 24). In Wikipedia, The Free Encyclopedia. Retrieved 20:09, July 26, 2016, from

Introgression from the Ancients

As stated in my previous blog, it appears that we were not the first “human-like” species to leave our mother-country of Africa. The Neanderthal and Denisovan people made this migration before our ancestors did. However, the Neanderthals and Denisovans may have played a role in our own ancestry. Unless your heritage comes solely from Africa, it is likely that you have a bit of Neanderthal DNA in you. This is partially because our ancestors mated with the Neanderthals in the Near and Middle East as they were leaving Africa. This caused major introgression events, meaning that the Neanderthals introduced non-human genetic material into the human population migrating out of Africa.

(Click Image to Enlarge – Image taken from Wikipedia article “History of human migration”
The numbers on this map represent how many years ago the human migrations occurred.
Homo erectus* – A hominin species whose DNA has not yet been sequenced)

Remnants of these introgression events (as well as others that took place at different points in time when the two groups came in contact with one another) can be spotted in our genomes. In fact, over half of the Neanderthal genome can be recreated using the DNA of today’s modern humans. This high percentage is due to an additive effect from the fact that each person with a heritage from outside of Africa gets approximately 1-3% of their DNA from Neanderthals. Keep in mind, your 1-3% might not be the same as my 1-3%. It simply depends on what part of one’s genome the Neanderthal bits survived in until today.

A similar story can be told with the Denisovan people. Introgression events granting Denisovan DNA to our ancestors occurred as our people spread southeast throughout Asia. Nowadays, it is generally the Melanesians, Papuans, and Australians that have the largest segments of DNA that come from the Denisovan genome. Approximately 3-6% of their ancestry comes from the Denisovans.

You may now be wondering why our genomes still contain segments of Neanderthal/Denisovan DNA. Some scientists will attribute the majority of this to genetic drift, meaning that it is entirely due to chance (**see previous blog post – “Survival of the Fittest? Not Always…”***). However, certain fragments may still be in our genome due to a process known as adaptive introgression. According to Racimo et al., “As modern and ancient DNA sequence data from diverse human populations accumulate, evidence is increasing in support of the existence of beneficial variants acquired from archaic humans that may have accelerated adaptation and improved survival in new environments.” This states that some of these segments from Neanderthals/Denisovans may be in our genomes because they were beneficial enough to help our ancestors thrive and reproduce successfully.

For my next blog post, I will be changing gears to talk about a scientific procedure known as Polymerase Chain Reaction, or PCR for short. The discovery of this simple technique allowed for DNA studies to blossom and allow for an array of studies. These range from the study of ancient DNA, such as that of the Neanderthals and Denisovans, all the way to the forensic analyses used so frequently in America’s judicial system. Until next time, carry on with curiosity.


Works Cited

Racimo, F., Sankararaman, S., Nielsen, R., & Huerta-Sánchez, E. (2015). Evidence for archaic adaptive introgression in humans. Nature Reviews Genetics16(6), 359-371.

History of human migration. (2016, June 24). In Wikipedia, The Free Encyclopedia. Retrieved 20:47, July 13, 2016, from

The Men and Woman Who Walked Beside our Ancestors

As discussed briefly in my last blog post, there were populations of organisms from our own genus, Homo, that were so different from our ancestors that most scientists consider them their own species. These “people” lived long ago. However, the idea that they are their own species should be taken with a certain degree of criticism because of science’s loose interpretation as to what exactly constitutes a “species.” When discussing Neanderthals (Homo neanderthalensis), nobody can argue against the fact that they were fairly distinct from our ancestors (Homo sapiens). However, the extent of this distinction is worth discussing. For example, ancient Homo sapiens diverged from the Neanderthals at around the same approximate point in history in which western chimpanzees diverged from eastern chimpanzees (Prado-Martinez, et al. 2013). Despite this fact, we consider humans and Neanderthals different species, yet we consider eastern and western chimpanzees simply different subspecies.

(Click on image to expand. “Homo neanderthalensis, adult male. Reconstruction based on Shanidar 1 by John Gurche.” Image taken from:

As we know, all human life began in Africa. All scientific evidence points to this fact. Our people eventually migrated out of Africa, but it appears as though the Neanderthals did this before our ancestors did. In fact, the majority of skeletal remains found from the Neanderthals were located in Europe. When they split off from the ancient group that contained both our ancestors and their ancestors, they likely migrated out of Africa through the North Eastern regions of the continent. They then traveled to Europe where they were able to continue evolving and developing the traits that made them unique from our own species. The discovery of Neanderthals was a grand one in scientific history, but it appears as though they were not the only group of “Homo” in the world other than our own species.

In 2010, a discovery was made in the Altai Mountains of Siberia. Specifically, it was made in a cave known as the Denisova Cave. The remains consisted mainly of a finger bone and a few molars (teeth). Despite the fragmented remains coming from different individuals, scientists were able to discover that they came from a new species that lived approximately 41,000 years ago! This species is now aptly named the Denisovans.

One might now be wondering how it is possible to tell that this was another species with nothing more than a few teeth and a finger bone from 41,000 years ago. The process is not a simple one, but it involves the isolation and amplification of ancient DNA from these sample. The isolation is necessary because there is so much “other” DNA that mixes with the ancient DNA. For example, countless bacteria exist, live, and thrive in the Denisova Cave, just as they do on the rest of our planet. Luckily, we are able to differentiate Hominin and bacterial DNA through bioinformatic analyses fairly simply because the two differ greatly. Then you run into the issue of “human contamination,” so you also need to separate the ancient DNA out from the highly similar human DNA that comes from the excavators and scientists working with the samples. Lastly, amplification is needed because only an extremely small amount of ancient DNA exists after 41,000 years. Amplification is done through a process known as polymerase chain reactions, AKA PCR, which takes a small amount of DNA and replicates it over and over again until you have enough to study. I will discuss this process further in a future blog post.

It is important to note that since these findings, there has also been evidence of other “ghost” hominin species similar to these ones. However, most of these were likely in Africa, where the hot humid climate is not conducive to the fossilization process. For example, there is evidence that another hominin species known as Homo erectus existed, but scientists have not yet been able to sequence DNA from the fossilized remains that were found.

In my next blog post, I will discuss how our ancestors mated with the Neanderthal and Denisovan people and the imprints that this left on our genetic signatures. Until next week, carry on with curiosity!


Works Cited

Prado-Martinez, J., Sudmant, P. H., Kidd, J. M., Li, H., Kelley, J. L., Lorente-Galdos, B., … & Cagan, A. (2013). Great ape genetic diversity and population history. Nature, 499(7459), 471-475.

Smithsonian’s National Museum of Natural History. (n.d.). Homo neanderthalensis | The Smithsonian Institution’s Human Origins Program. Retrieved July 05, 2016, from

The Non-Linear March of Progress

Go to and type in the word “evolution.” Then click on the “Images” tab and you will see the same image, or a variant of it, displayed over and over again. We have all seen the picture before. It was originally coined “The March of Progress” and is supposed to display human evolution throughout history.

(Click on the Image to Enlarge – The March of Progress by Rudolph Zallinger)

While this image is potentially the most famous and iconic scientific diagram ever constructed, it is extremely misleading. It has been the cause of a number of misinformed criticisms to the theory* of evolution. The king of all misinformed critiques asks why chimpanzees are seen on the left side of this diagram, modern humans are seen on the right, but none of the intermediate species still exist today. This is because the organism on the left of this diagram is NOT supposed to be a chimpanzee.

Humans did not evolve from chimpanzees, any other apes, or any monkeys that we see on the planet today. Instead, we all share common ancestry. This means that approximately 65 million years ago, a time period that represents less than 1.5% of the age of our planet, there existed a “base primate” species. This base primate species was not the same as any primate species that we know today. However, it would have had characteristics of each group of primates. As time passed, its genetic information would have been warped slowly and new groups would have formed as the progeny of this original population began separating from one another. These gradual changes would eventually form the branches to the tree of life that we see below:

(Click on the Image to Enlarge – Image of a Cladogram Taken as a Screenshot of Wikipedia)

This tree shows which groups formed first, from left to right (Primates, Haplorhini/Strepsirrhini, Simiiformes/Tarsiiformes, etc.) and some of the subdivisions that occurred within the primate lineage in order to form the Homo clade. This is where humans reside. We are known as Homo sapiens. We are also not the only group that has ever existed that falls within the genus Homo. However, we are the only group of Homo that is still alive today. That is why our closest living relative is the chimpanzee, a species that falls under the genus Pan (Pan troglodytes). As you can see, we do not directly come from chimpanzees. Instead, we simply share common ancestry with them.

Next week, I will discuss more about some of the other groups of Homo that walked alongside our ancestors, known as the Neanderthals and the Denisovans.

*It is important to note that a scientific theory is not the same as a theory in other fields. It is not simply a hunch. In order for a scientific explanation to become a theory, it has to have passed every test that it has ever been put through. Every bit of evidence that has ever been gathered by mankind supports the theory of evolution. In the scientific community, its existence is not something that is still debated. In laboratories around the planet, including the one that I am part of, we study specific aspects of evolution. However, we do not refer to the theory of evolution as a “fact” because we can still incorporate new data into the theory. It is malleable, but will not be disproven.

Works Cited

Primate. (n.d.). In Wikipedia. Retrieved May 11, 2016, from

Rudolph Zallinger’s “The March of Progress” from Time-Life’s 1965 book Early Man

Evo-Devo and Gene Regulation in Animals

Unfortunately, evolution is not a topic that is stressed enough in America’s educational system. Charles Darwin, the father of evolution, proposed that all organisms came to be via a gradual process known as descent with modification”. Simply put, this process allows for the accumulation of small changes that eventually cause far more dramatic ones. The natural human response to this concept is to think that such small changes cannot be responsible for the immense variety of life on this planet. This is nothing more than human bias. Without proper training, it is difficult for an individual to wrap their mind around the larger picture. Evolution has been shaping life on our planet throughout a timescale in which we are inconsequential, making the concept difficult to grasp.

The field of Evolution and Development (Evo-Devo) tries to answer questions in biology regarding how evolution shaped all organisms, allowing them to develop into a vast array of differing forms. What is interesting about this is that organisms tend to have a set body plan encoded within them at birth.

For the most part, animals have a general body plan that their DNA codes for. The environment can help play a role in this. For example, an individual who does not get proper nutrition may never reach their maximum height potential. However, unless an individual has some sort of serious birth defect, each one of us has the DNA sequences necessary for all of our major body parts. Within each of us is the genetic code to form two eyes, two arms, two legs, etc. Similarly, all non-human animals have the blueprints needed for their particular body plan.

It turns out that animals form in “segments.” Each of our limbs form as different segments that then specialize further and further until they take their particular shape. In these regards, even sections of our body that seem as different as our arms and our eyes can be looked at as similar. Each of these originally form as an individual “segment” of the body. These begin as clumps of stem cells. These stem cells have the ability to become any human cell type. A fair amount of this transformation from stem cells to mature cells is controlled by a set of genes known as the Homeobox genes.

The Homeobox genes, also known as Hox genes, code for the Homeodomain proteins. These Homeodomain proteins are transcription factors. Transcription factors bind to specific portions of the DNA. This binding affects which sections of the DNA get used to make messenger RNA (mRNA) and how much of the mRNA gets created. This is important because mRNA is the molecule that leaves the nucleus to code for proteins via the process known as translation. This allows for genes to be expressed at different amounts. These Hox genes play a similar role in all animals. They are part of a network of genes that help give an animal its form. There are multiple copies of the Hox gene in each animal. This is due to a number of tandem duplications, as well as a few whole genome duplications. Tandem duplications give rise to a copied segment of the DNA that is located beside the original copy. In contrast, whole genome duplications copy the entirety of an organism’s genetic sequence. Both of these phenomena can be seen by studying the evolutionary history of these developmental genes. In any case, the number of Hox genes may vary, but their coding sequences are fairly conserved. This is due to the importance of their function.

(Click Picture to Enlarge)

Once again, Hox genes were crucial to the development of the vast array of organisms around us because they code for transcription factors. While they are not the only gene family to do so, they are one of the most important to animal development. A phenomenon known as gene expression is largely controlled by these transcription factors. To further explain gene expression, it is important to note that your DNA is essentially the same in all regions of the body, no matter how different two areas are. For example, the DNA sequence in your eye is the same as the sequence in your liver. However, how that DNA is expressed would be different. This is known as differential regulation. Depending on where you are in the body, some sections of the DNA will be more active than others. Differences in gene expression cause differences in protein levels. These differing protein levels cause the morphological (form) and physiological (function) differences that one can observe from one body part to the next. Similarly, gene regulation is responsible for a fair amount of the variation seen between organisms from distinct species. This is important to understand because most conventional evolutionary courses seem to imply that variation comes solely from changes in coding sequences. In other words, novel variation can come from mutations in the sections of the DNA that code for proteins, or it can come from mutations in the portions of the DNA that transcription factors bind to, changing gene expression.

The pioneers of the field of Evo-Devo have equipped us with what we need to move forward and continue expanding human scientific knowledge.